An operator formula for the number of halved monotone triangles with prescribed bottom row

نویسنده

  • Ilse Fischer
چکیده

Abstract. Monotone triangles are certain triangular arrays of integers, which correspond to n × n alternating sign matrices when prescribing (1, 2, . . . , n) as bottom row of the monotone triangle. In this article we define halved monotone triangles, a specialization of which correspond to vertically symmetric alternating sign matrices. We derive an operator formula for the number of halved monotone triangles with prescribed bottom row which is analogous to our operator formula for the number of ordinary monotone triangles [2].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The operator formula for monotone triangles - simplified proof and three generalizations

Abstract. We provide a simplified proof of our operator formula for the number of monotone triangles with prescribed bottom row, which enables us to deduce three generalizations of the formula. One of the generalizations concerns a certain weighted enumeration of monotone triangles which specializes to the weighted enumeration of alternating sign matrices with respect to the number of −1s in th...

متن کامل

Refined enumerations of alternating sign matrices: monotone (d,m)-trapezoids with prescribed top and bottom row

Monotone triangles are plane integer arrays of triangular shape with certain monotonicity conditions along rows and diagonals. Their significance is mainly due to the fact that they correspond to n× n alternating sign matrices when prescribing (1,2, . . . , n) as bottom row of the array. We define monotone (d,m)-trapezoids as monotone triangles with m rows where the d − 1 top rows are removed. ...

متن کامل

A new proof of the refined alternating sign matrix theorem

Abstract. In the early 1980s, Mills, Robbins and Rumsey conjectured, and in 1996 Zeilberger proved a simple product formula for the number of n × n alternating sign matrices with a 1 at the top of the i-th column. We give an alternative proof of this formula using our operator formula for the number of monotone triangles with prescribed bottom row. In addition, we provide the enumeration of cer...

متن کامل

Constant Term Formulas for Refined Enumerations of Gog and Magog Trapezoids

Gog and Magog trapezoids are certain arrays of positive integers that generalize alternating sign matrices (ASMs) and totally symmetric self-complementary plane partitions (TSSCPPs) respectively. Zeilberger used constant term formulas to prove that there is the same number of (n, k)-Gog trapezoids as there is of (n, k)-Magog trapezoids, thereby providing so far the only proof for a weak version...

متن کامل

Enumeration of Alternating Sign Triangles Using a Constant Term Approach

Alternating sign triangles (ASTs) have recently been introduced by Ayyer, Behrend and the author, and it was proven that there is the same number of ASTs with n rows as there is of n × n alternating sign matrices (ASMs). We prove a conjecture by Behrend on a refined enumeration of ASTs with respect to a statistic that is shown to have the same distribution as the column of the unique 1 in the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2009